
Kinetically induced solitons

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 7289

(http://iopscience.iop.org/0305-4470/33/41/303)

Download details:

IP Address: 171.66.16.123

The article was downloaded on 02/06/2010 at 08:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/41
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 7289–7296. Printed in the UK PII: S0305-4470(00)15063-2

Kinetically induced solitons

Michael Schulz and Steffen Trimper
Fachbereich Physik, Martin-Luther-Universität, D-06099 Halle, Germany

Received 28 June 2000

Abstract. A combination of two stochastic hopping processes is studied on a one-dimensional
chain. Firstly, the particles undergo asymmetric hops with different jump lengths and rates where
the principle of detailed balance is violated. The second process favours the nearest neighbour
hopping whenever the next nearest sites are occupied. Due to the competition of both processes
the averaged density exhibits stable solitary excitations which are induced purely by the underlying
kinetics and not by forces. The numerical results are supported strongly by an analytical approach
based on a quantum formulation of the master equation. Already in the simplest approximation
the averaged density satisfies the Korteweg–de Vries equation with additional dissipative terms,
the influence of which is discussed by scaling arguments.

1. Introduction

Solitons are localized travelling waves that propagate with constant velocities and undistorted
shapes. They exist in a broad spectrum of very different systems. Even though solitons were
first observed by Russell in 1834. When a boat suddenly stopped, a lump of water formed at the
front of the boat and moved forward with constant speed and shape. Applying hydrodynamics
Korteweg and de Vries succeeded in deriving a famous equation named after both scientists
(the KdV equation) for such shallow water waves. Moreover, solitons exist in plasmas [1],
molecular systems [2], superfluids [3], laser pulses [4], magnetic systems [5], structural phase
transitions [6], polymers [7], liquid crystals [8], fluid flows [9] as well as elementary particles
[10]. Even solitary solutions are also observed in the sky as density waves in spiral galaxies,
and the giant red spot in the atmosphere [11]. In a recent result it was shown that acoustic
solitary waves could be produced by altering the propagation of sound through an air-filled tube
[16]. The KdV equation also offers a variety of mathematical properties elaborated further in
[12, 13]. An extension to a more general form is discussed in [14]. A review of the development
is given by Lam [15].

Solitary excitations appear in systems which are characterized by non-trivial nonlinearities
and dispersion relations. From a mathematical point of view solitons are special non-singular
solutions of nonlinear partial differential equations. Physically, the underlying equations can be
traced back to the action of forces. The KdV equation, for instance, is based on hydrodynamic
equations and describes phenomena with weak nonlinearity and weak dispersion, including
the mentioned waves in shallow water or magnetohydrodynamic waves in plasmas or certain
kinds of photon excitations in crystals.

Contrary to all the previous studies we report on solitary excitations, the origin of which
can be attributed to a statistical background. The system under consideration is far from
thermodynamic equilibrium and is driven by local kinetic processes without any contact to a
heat bath. The principle of detailed balance is broken due to a more refined random walk on
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a lattice. Our interest is focused on the following one-species process: each particle, situated
at the lattice site i on a one-dimensional chain, hops with a constant rate D between site i
and site i − m with m > 1 by overjumping the intermediate sites. Simultaneously with that
backward hopping across m bonds (we chose mostly m = 3), the particles are allowed to
perform a forward jump with them-fold ratemD between nearest neighbours. Obviously, the
overjump process combined with the gradual hop visiting all the intermediate sites, leads to the
violation of detailed balance, especially on a time scale of the order of the elementary hopping
time τ and consequently on a small spatial scale. For the many-particle system it appears as
a typical dispersion resulting in a local broadening of the characteristic motion. On the long
time scale t � τ and consequently on the long spatial scale, the broken detailed balance due
to the more complicated local kinetic processes should be irrelevant. The combination of the
two random processes introduced is superimposed by an additional hopping process between
nearest neighbours where the particles are subjected to a kinetically induced interaction in such
a manner that the hopping attempt over one lattice unit l is realized only whenever the next
nearest site is already occupied. That kind of an asymmetric process leads to a drift motion
which is coupled to the density in a nonlinear manner.

Such a situation could be relevant for granular materials. Depending on the size of the
materials, particles may perform local hopping processes in backward and forward directions
with different rates. Furthermore, the transport should be influenced by a kinetically mediated
attraction. A similar situation is realized when particles move on a ratchet. A gradual upward
motion over several lattice sites is followed by a rapid downward fall, but different to our
model, the particles move only in one direction. Moreover, the model could be interesting for
traffic dynamics where cars fall backm sites and after that, they are able to overtake cars ahead
only step by step. Even for a biological wandering motion the asymmetric behaviour could be
relevant.

Here we present the results of the numerical simulation originating from the elementary
hopping processes introduced above. Moreover, we offer an analytical approach based on a
master equation description as well as for systems with and without exclusion. From that point
of view the feature of the dispersion relation, inherent for solitons, is manifested through the
broken detailed balance. The nonlinearities are adopted by a kinetic interaction which favours
a kind of attraction between the particles. In particular, due to such a facilitated process it
results in a nonlinear coupling between the density gradient and the density itself. Systems,
satisfying detailed balance or alternatively, without any kinetic interactions, do not reveal
solitary excitations, i.e. only the combination of both competing effects leads to the suggested
result.

2. Numerical simulation

Based on a conventional Monte Carlo algorithm the asymmetric dynamical rules can be used to
simulate immediately the motion of the particles on the chain. A particle, randomly selected at
the lattice site i, performs either a hopping process to the left-hand direction, overjumping
m sites by that process, or it jumps to its nearest-neighbour site on the right-hand side.
Whereas the probability for the first jump is λ, the second one is realized with probability
mλ. Furthermore, the jumping probability will be enhanced by mλ → mλ(ni−1 + nn+2),
whenever the left neighbour site i − 1 or the right neighbour site at i + 2 are already occupied.
Here ni is the occupation number at the corresponding site i. In particular, the occupation
number becomes relevant when the exclusion principle is taken into account. In that case a
hopping event is allowed only for ni−m = 0 or ni+1 = 0. For an arbitrary occupation number
per lattice site (Bose case) the occupation number of the final site of the jump is not relevant.
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The simulation is performed on a chain of the length L � 103 lattice sites with periodic
boundary conditions. Initially, all particles are distributed in a random manner on the lattice.
The averaged occupation number of the initial distribution depends on the position via the
relation

〈ni〉 = n0 + h exp

{
− (xi − L/2)

2

2σ

}
.

Therefore, an initial excitation is created around L/2 with height h and width σ . The
background occupation number n0 is chosen as n0 = 0.2 (Fermi case) and n0 = 20.0 (Bose
case).

Figure 1. Time evolution of the averaged density without exclusion. The initial width is 250 lattice
units. The time interval between two peaks corresponds to 106 elementary steps. The average is
performed over 103 samples.

Both processes, the restricted hopping and the anisotropic overjumping events, lead in
the case of bosons to the solitary excitations depicted in figure 1. Note that the form stable
excitations appear only after averaging over an ensemble of equally prepared systems. Whereas
each single event is subjected to stochastic dynamics the averaged density offers well defined
solitons. To be more specific, the simulations shown in figure 1 are based on the dynamics
characterized above where the initial width σ is approximately 250 lattice units. The nonlinear
excitations are stable and the amplitude remains fixed during the whole process. In figure 2
we show likewise the simulation for a Bose system, however, with the initial width, smaller
as before, of 50 lattice units. In that case the amplitude h is decreased slightly which will be
discussed in the context of the analytical approach in the subsequent section. Figure 3 offers
the result for the same model but with an exclusion principle, where all hopping attempts,
leading to a double occupancy of a single lattice site, are rejected. Stable solitary excitations
result with a rather constant amplitude after a relaxation process.
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Figure 2. The same system as shown in figure 1, but with an initial width of 50 lattice units.

Figure 3. Time evolution of the averaged density with exclusion. The time interval between two
peaks corresponds to 4 × 106 elementary steps, The average is performed over 104 samples. The
solitary excitation becomes asymptotically form stable.

3. Analytical approach

Now we present an analytical treatment of the mentioned problem. To that end we adopt a
coarse-grained point of view. At any instant of time the system is considered to be in a random
configuration characterized by the occupation numbers n = n1, n2, . . . at the lattice sites. A
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complete description is provided by the probabilityP(n, t), the time evolution of which should
obey the master equation [17]

∂tP (n, t) = L′P(n, t). (1)

The evolution operator L′ will be specified by the dynamical rules considered above.
Introducing the state vector |F(t)〉 which is related to the probability distribution function
P(n, t) according to P(n, t) = 〈n|F(t)〉 the master equation can be rewritten in an equivalent
form [18]

∂t |F(t)〉 = L|F(t)〉. (2)

Here, we have introduced a complete set of basic-vectors |n〉 composed of second quantized
operators. The evolution operator L can be mapped onto the operator L′ appearing in the
master equation. Such an approach had been introduced by Doi [18] using Bose operators (cf
also [19]). A generalization to Pauli–operators had been proposed [20–23], for recent reviews
see [24–26].

Using the state function 〈s| = ∑〈n| and the relation 〈s|L = 0, the evolution equation for
an arbitrary operator B can be written as

∂t 〈B〉 = 〈s|[B,L]|F(t)〉. (3)

It should be noted that all the dynamical equations governed the classical problem are
determined by the commutation rules of the underlying operators and the structure of the
operator L.

For the processes used in the simulations the evolution operator consists of two parts
L = L(m) + L(r) where the first one describes the overjumping attempts

L(m) = D
∑
i

(
a

†
i−mai − ni +m

(
a

†
i+1ai − ni

))
. (4)

The index i runs over the whole lattice, and the index m is fixed. Mostly, we are interested in
the case m = 3. The first term describes the hopping process between lattice site i − m and
site i. A particle is annihilated at i and recreated at site i −m. The second term in L(m) with
the rate mD represents the shorter forward jumps visiting the intermediate sites. Obviously,
the principle of detailed balance is violated by such a complex process.

The evolution operatorL(r) is related to hops under constraints. This means that a particle
moves stochastically from lattice site i to site i + 1 whenever that site i + 1 and, moreover, site i
are already occupied. These processes model a kind of kinetic monitored attraction, because
the jump of the particle is facilitated by the occupation number of the site to which the particle
intends to jump or on the site from which the particle jumps,

L(r) = µ
∑
i

[
a

†
i+1ai − ni

]
[ni+1 + ni]. (5)

We should stress again, that each single hopping event is a complete stochastic process, whereas
the resulting evolution equation for the density is an averaged equation over all realizations.
Assuming Bose commutation rules and applying equation (3) one verifies for the averaged
density

∂t 〈nr〉 = D[〈nr+m〉 − 〈nr〉 +m(〈nr−1〉 − 〈nr〉)] + µ[〈nr−1(nr + nr−1)〉 − 〈nr(nr+1 + nr)〉]. (6)

This equation is characterized by dispersion originated by the m-fold jumps and by
nonlinearities traced back to the facilitated hopping. Using the simplest decoupling
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approximation of the nonlinear part we derive from equation (6) an evolution equation for
the averaged density in a continuous representation (m = 3)

∂tn = nxx − nxxx − nnx − 3
8 (n

2
x + nnxx) (7)

where n(x, t) denotes 〈nr(t)〉. The involved factorization of the density correlation function
is a reasonable approximation in the case of a high averaged density n. It seems to be
the better the higher the occupation number per lattice site. This suggestion is likewise
confirmed by the numerical simulations. The prefactors of the first three terms are chosen
to be one which can be reached by an appropriate rescaling of the density n → − 9D

4µ n,

the spatial coordinate x → − 2l
3 x and the time t → 2

27D t . The last equation is the
Korteweg–de Vries equation well known in hydrodynamics with an additional diffusive nxx-
term and further dissipative terms, which are attributed to the statistical consideration of the
problem.

A similar approach can be used for a hard-core exclusive interaction where different to
the previous case a spin- 1

2 representation should be used. In terms of Pauli operators the
threefold-jump evolution operator, see equation (4), now reads

L(3) = D
∑
i

(
a

†
i−3ai − (1 − ni−3)ni + 3

[
a

†
i+1ai − (1 − ni+1)ni

])
. (8)

Here, the underlying operators fulfil the commutation rule [ai, a
†
j ] = (1 − 2ni)δij . The

resulting evolution equation for the density always leads to a modified KdV equation with a
similar structure to equation (7). There also appear dissipative terms, the influence of which
will be estimated by using scaling arguments. To this end let us introduce dimensionless
variables by rescaling the continuous form of equation (6): n → αn, t → βt and x → γ x.
The conventional KdV equation yields |β−1| � t−1

K ≡ |Dl3γ−3| + |µlαγ−1|. Physically, tK
denotes the characteristic time scale for the propagation of a soliton based on the pure KdV
equation. Using the same arguments for the whole equation (6) we obtain the more general
estimation

|β| = tK

1 + tK/tD + tK/tDi
. (9)

Here, tD = |γ 2/(Dl2)| is a typical diffusion time, and tDi = |γ 2(µlα)−1| denotes a typical
time scale over which the energy can be dissipated. From equation (9) one observes a slowing
down of the characteristic time for propagation of a soliton due to dissipation and diffusion
given by |β| < tK . Such a retardation leads to a broadening of the soliton width and to
the decrease of its amplitude as observed by the numerics (see figures 2 and 3). Due to
the fact that the dissipation time scale tDi decreases with increasing numbers of particles in
a cell nl, the energy dissipation occurs at a small time scale tK � tDi in dense systems.
Hence, such systems are dominated by the dissipation |β| � tDi . Consequently, a soliton
excitation will be presumably suppressed completely. When the diffusion time is much
smaller than the propagation time for solitons tD � tK , the system reveals a purely diffusive
behaviour where the time scale is given by |β| � tD . In that case solitary excitations are
also suppressed. Only whenever both time scales tD and tDi are simultaneously large in
comparison with tK , is the behaviour of the system dominated by the travelling of solitons
as has been realized by the simulations. Physically it means that solitary modes can be
excited within the framework of a statistical approach when diffusive and dissipative processes
are only relevant in the long-time limit. However, on a reasonable time scale solitons are
produced in a self-organized manner after averaging over an ensemble. Based on scaling
arguments we find that both conditions tK � tD and tK � tD are simultaneously fulfilled
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for µαγ/(Dl) � 1 and γ /l � 1. The condition α � D/µ means that tD � tDi . When
both scales are large and of the same order then the propagation of a soliton is realized. It
seems that for a sufficiently extended excitation γ � l dissipation will occur only in the
long-time limit. Obviously that case is even realized within the simulations (cf figures 1
and 2).

4. Conclusions

In the present paper we have considered a system with competing kinetic processes. A
random hopping process with different jump lengths and rates into the left- and right-hand
directions (the product of both quantities is fixed) breaks the principle of detailed balance and
consequently, the underlying equation evolves a dispersive part and additional dissipative ones.
Furthermore, the hopping process between nearest neighbours is supported by the occupation
of the corresponding sites in the environment. This fact gives rise to nonlinearities because
both the density of the hopping particles and the density of the particles in the environment
contribute to the jumping process. Although each individual process is random, stable solitary
excitations result without any tuning from the outside. The soliton appears self-organized after
a statistical averaging over different configurations. The simulation, performed on a simple
chain, demonstrates the occurrence of solitons induced by the underlying kinetics and not
by forces. Alternatively to the Monte Carlo simulation, we have studied the problem using
the master equation. Applying a second quantized formulation we succeeded in deriving a
nonlinear partial differential equation of Korteweg–de Vries type which is supplemented by
the inclusion of diffusive and dissipative terms, attributed to the statistical consideration. The
dissipative term leads the solitary excitation, the amplitude of which decreases slightly in
the direction of propagation. This decreasing amplitude is also manifested in the numerical
approach. However, the simulation offers form stable excitations on a rather long time scale.
Note, that the soliton appears after averaging over several stochastic processes. Collective
random processes are able, obviously, to organize their motion in such a manner that the
excitation reveals an undistorted or only slightly distorted shape as was demonstrated by the
simulations. Moreover, the numerical findings could be supported strongly by an analytical
approach based on a probabilistic approach.
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